34 research outputs found

    Enhancing the Sense of Attention from an Assistance Mobile Robot by Improving Eye-Gaze Contact from Its Iconic Face Displayed on a Flat Screen

    Get PDF
    One direct way to express the sense of attention in a human interaction is through the gaze. This paper presents the enhancement of the sense of attention from the face of a human-sized mobile robot during an interaction. This mobile robot was designed as an assistance mobile robot and uses a flat screen at the top of the robot to display an iconic (simplified) face with big round eyes and a single line as a mouth. The implementation of eye-gaze contact from this iconic face is a problem because of the difficulty of simulating real 3D spherical eyes in a 2D image considering the perspective of the person interacting with the mobile robot. The perception of eye-gaze contact has been improved by manually calibrating the gaze of the robot relative to the location of the face of the person interacting with the robot. The sense of attention has been further enhanced by implementing cyclic face explorations with saccades in the gaze and by performing blinking and small movements of the mouth

    Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories

    Get PDF
    Odometry is a simple and practical method that provides a periodic real-time estimation of the relative displacement of a mobile robot based on the measurement of the angular rotational speed of its wheels. The main disadvantage of odometry is its unbounded accumulation of errors, a factor that reduces the accuracy of the estimation of the absolute position and orientation of a mobile robot. This paper proposes a general procedure to evaluate and correct the systematic odometry errors of a human-sized three-wheeled omnidirectional mobile robot designed as a versatile personal assistant tool. The correction procedure is based on the definition of 36 individual calibration trajectories which together depict a flower-shaped figure, on the measurement of the odometry and ground truth trajectory of each calibration trajectory, and on the application of several strategies to iteratively adjust the effective value of the kinematic parameters of the mobile robot in order to match the estimated final position from these two trajectories. The results have shown an average improvement of 82.14% in the estimation of the final position and orientation of the mobile robot. Therefore, these results can be used for odometry calibration during the manufacturing of human-sized three-wheeled omnidirectional mobile robots

    The Assistant Personal Robot Project: From the APR-01 to the APR-02 Mobile Robot Prototypes

    Get PDF
    This paper describes the evolution of the Assistant Personal Robot (APR) project developed at the Robotics Laboratory of the University of Lleida, Spain. This paper describes the first APR-01 prototype developed, the basic hardware improvement, the specific anthropomorphic improvements, and the preference surveys conducted with engineering students from the same university in order to maximize the perceived affinity with the final APR-02 mobile robot prototype. The anthropomorphic improvements have covered the design of the arms, the implementation of the arm and symbolic hand, the selection of a face for the mobile robot, the selection of a neutral facial expression, the selection of an animation for the mouth, the application of proximity feedback, the application of gaze feedback, the use of arm gestures, the selection of the motion planning strategy, and the selection of the nominal translational velocity. The final conclusion is that the development of preference surveys during the implementation of the APR-02 prototype has greatly influenced its evolution and has contributed to increase the perceived affinity and social acceptability of the prototype, which is now ready to develop assistance applications in dynamic workspaces.This research was partially funded by the Accessibility Chair promoted by Indra, Adecco Foundation and the University of Lleida Foundation from 2006 to 2018. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results

    Application of a Single-Type eNose to Discriminate the Brewed Aroma of One Caffeinated and Decaffeinated Encapsulated Espresso Coffee Type

    Get PDF
    This paper assesses a custom single-type electronic nose (eNose) applied to differentiate the complex aromas generated by the caffeinated and decaffeinated versions of one encapsulated espresso coffee mixture type. The eNose used is composed of 16 single-type (identical) metal–oxide semiconductor (MOX) gas sensors based on microelectromechanical system (MEMS). This eNose proposal takes advantage of the small but inherent sensing variability of MOX gas sensors in order to provide a multisensorial description of volatiles or aromas. Results have shown that the information provided with this eNose processed using LDA is able to successfully discriminate the complex aromas of one caffeinated and decaffeinated encapsulated espresso coffee type

    Classification of Three Volatiles Using a Single-Type eNose with Detailed Class-Map Visualization

    Get PDF
    The use of electronic noses (eNoses) as analysis tools are growing in popularity; however, the lack of a comprehensive, visual representation of how the different classes are organized and distributed largely complicates the interpretation of the classification results, thus reducing their practicality. The new contributions of this paper are the assessment of the multivariate classification performance of a custom, low-cost eNose composed of 16 single-type (identical) MOX gas sensors for the classification of three volatiles, along with a proposal to improve the visual interpretation of the classification results by means of generating a detailed 2D class-map representation based on the inverse of the orthogonal linear transformation obtained from a PCA and LDA analysis. The results showed that this single-type eNose implementation was able to perform multivariate classification, while the class-map visualization summarized the learned features and how these features may affect the performance of the classification, simplifying the interpretation and understanding of the eNose results

    Assessing over Time Performance of an eNose Composed of 16 Single-Type MOX Gas Sensors Applied to Classify Two Volatiles

    Get PDF
    This paper assesses the over time performance of a custom electronic nose (eNose) composed of an array of commercial low-cost and single-type miniature metal-oxide (MOX) semiconductor gas sensors. The eNose uses 16 BME680 versatile sensor devices, each including an embedded non-selective MOX gas sensor that was originally proposed to measure the total volatile organic compounds (TVOC) in the air. This custom eNose has been used previously to detect ethanol and acetone, obtaining initial promising classification results that worsened over time because of sensor drift. The current paper assesses the over time performance of different classification methods applied to process the information gathered from the eNose. The best classification results have been obtained when applying a linear discriminant analysis (LDA) to the normalized conductance of the sensing layer of the 16 MOX gas sensors available in the eNose. The LDA procedure by itself has reduced the influence of drift in the classification performance of this single-type eNose during an evaluation period of three month

    Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant

    Get PDF
    This paper presents the empirical evaluation of the path-tracking accuracy of a three-wheeled omnidirectional mobile robot that is able to move in any direction while simultaneously changing its orientation. The mobile robot assessed in this paper includes a precise onboard LIDAR for obstacle avoidance, self-location and map creation, path-planning and path-tracking. This mobile robot has been used to develop several assistive services, but the accuracy of its path-tracking system has not been specifically evaluated until now. To this end, this paper describes the kinematics and path-planning procedure implemented in the mobile robot and empirically evaluates the accuracy of its path-tracking system that corrects the trajectory. In this paper, the information gathered by the LIDAR is registered to obtain the ground truth trajectory of the mobile robot in order to estimate the path-tracking accuracy of each experiment conducted. Circular and eight-shaped trajectories were assessed with different translational velocities. In general, the accuracy obtained in circular trajectories is within a short range, but the accuracy obtained in eight-shaped trajectories worsens as the velocity increases. In the case of the mobile robot moving at its nominal translational velocity, 0.3 m/s, the root mean square (RMS) displacement error was 0.032 m for the circular trajectory and 0.039 m for the eight-shaped trajectory; the absolute maximum displacement errors were 0.077 m and 0.088 m, with RMS errors in the angular orientation of 6.27° and 7.76°, respectively. Moreover, the external visual perception generated by these error levels is that the trajectory of the mobile robot is smooth, with a constant velocity and without perceiving trajectory corrections

    Suboptimal Omnidirectional Wheel Design and Implementation

    Get PDF
    The optimal design of an omnidirectional wheel is usually focused on the minimization of the gap between the free rollers of the wheel in order to minimize contact discontinuities with the floor in order to minimize the generation of vibrations. However, in practice, a fast, tall, and heavy-weighted mobile robot using optimal omnidirectional wheels may also need a suspension system in order to reduce the presence of vibrations and oscillations in the upper part of the mobile robot. This paper empirically evaluates whether a heavy-weighted omnidirectional mobile robot can take advantage of its passive suspension system in order to also use non-optimal or suboptimal omnidirectional wheels with a non-optimized inner gap. The main comparative advantages of the proposed suboptimal omnidirectional wheel are its low manufacturing cost and the possibility of taking advantage of the gap to operate outdoors. The experimental part of this paper compares the vibrations generated by the motion system of a versatile mobile robot using optimal and suboptimal omnidirectional wheels. The final conclusion is that a suboptimal wheel with a large gap produces comparable on-board vibration patterns while maintaining the traction and increasing the grip on non-perfect planar surfaces.This research was funded by the MCI program, grant number PID2020-118874RB-I00
    corecore